Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.021
1.
Sci Rep ; 14(1): 10553, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719901

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory conditions of the gastrointestinal tract associated with multiple pathogenic factors, including dysregulation of the immune response. Effector CD4+ T cells and regulatory CD4+ T cells (Treg) are central players in maintaining the balance between tolerance and inflammation. Interestingly, genetic modifications in these cells have been implicated in regulating the commitment of specific phenotypes and immune functions. However, the transcriptional program controlling the pathogenic behavior of T helper cells in IBD progression is still unknown. In this study, we aimed to find master transcription regulators controlling the pathogenic behavior of effector CD4+ T cells upon gut inflammation. To achieve this goal, we used an animal model of IBD induced by the transfer of naïve CD4+ T cells into recombination-activating gene 1 (Rag1) deficient mice, which are devoid of lymphocytes. As a control, a group of Rag1-/- mice received the transfer of the whole CD4+ T cells population, which includes both effector T cells and Treg. When gut inflammation progressed, we isolated CD4+ T cells from the colonic lamina propria and spleen tissue, and performed bulk RNA-seq. We identified differentially up- and down-regulated genes by comparing samples from both experimental groups. We found 532 differentially expressed genes (DEGs) in the colon and 30 DEGs in the spleen, mostly related to Th1 response, leukocyte migration, and response to cytokines in lamina propria T-cells. We integrated these data into Gene Regulatory Networks to identify Master Regulators, identifying four up-regulated master gene regulators (Lef1, Dnmt1, Mybl2, and Jup) and only one down-regulated master regulator (Foxo3). The altered expression of master regulators observed in the transcriptomic analysis was confirmed by qRT-PCR analysis and found an up-regulation of Lef1 and Mybl2, but without differences on Dnmt1, Jup, and Foxo3. These two master regulators have been involved in T cells function and cell cycle progression, respectively. We identified two master regulator genes associated with the pathogenic behavior of effector CD4+ T cells in an animal model of IBD. These findings provide two new potential molecular targets for treating IBD.


CD4-Positive T-Lymphocytes , Gene Regulatory Networks , Inflammatory Bowel Diseases , Animals , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice, Inbred C57BL , Mice, Knockout , Gene Expression Regulation
2.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article En | MEDLINE | ID: mdl-38725845

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
3.
Curr Protoc ; 4(5): e1026, 2024 May.
Article En | MEDLINE | ID: mdl-38733265

Nuclear factor-κB (NF-κB) is a crucial pro-inflammatory transcription factor whose activation is of immense interest to immunology research. Estimation of NF-κB activation through flow cytometry is not possible due to the unavailability of robust flow cytometry antibodies that can bind to its phosphorylated, active, nuclear form. In this protocol, we describe a flow cytometry assay that measures the activation of the pro-inflammatory transcription factor NF-κB in stimulated immune cells by quantifying the degradation of its upstream regulator IκBα. We demonstrate the utility of this protocol by assessment of intracellular IκBα in human primary regulatory T cells experiencing TNFR2 agonism, a process previously reported to activate NF-κB in these cells. We also show that this assay may be applied to study NF-κB activation in other cell types, such as human primary T cells and THP-1 cell-derived macrophages, when induced by their corresponding inflammatory cues. Thus, this robust and reproducible protocol will be of interest to a wide range of scientists who aim to measure NF-κB activity in medium-to-high-throughput assays. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantifying inflammatory activation by flow cytometry of IκBα degradation Support Protocol 1: Isolating and expanding human regulatory T cells Support Protocol 2: Calculating IC50 from flow cytometry data using Excel.


Flow Cytometry , NF-KappaB Inhibitor alpha , NF-kappa B , Humans , Flow Cytometry/methods , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Proteolysis , THP-1 Cells , Macrophages/metabolism , Macrophages/immunology
4.
FASEB J ; 38(10): e23667, 2024 May 31.
Article En | MEDLINE | ID: mdl-38742812

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Colitis , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Trinitrobenzenesulfonic Acid , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Janus Kinase 2/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , STAT3 Transcription Factor/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Signal Transduction/drug effects , Trinitrobenzenesulfonic Acid/toxicity , Male , Mice, Inbred BALB C , Cell Differentiation/drug effects
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 373-377, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710521

Patients with Hashimoto's thyroiditis had increased numbers of Th17 cells in serum and thyroid tissue, significantly elevated levels of interleukin 17 (IL-17), and an imbalance in the ratio of Th17 cells to regulatory T cells (Tregs). The reduced Tregs' ratio leads to a reduction in immunosuppressive function within the thyroid gland, while Th17 cells are involved in the development of HT by regulating the expression of pro-inflammatory cytokines in the thyroid gland and mediating thyroid tissue fibrosis through the secretion of IL-17.


Hashimoto Disease , Interleukin-17 , T-Lymphocytes, Regulatory , Th17 Cells , Hashimoto Disease/immunology , Hashimoto Disease/blood , Hashimoto Disease/metabolism , Humans , Interleukin-17/metabolism , Interleukin-17/blood , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thyroid Gland/immunology , Thyroid Gland/metabolism , Animals
6.
Sci Rep ; 14(1): 10201, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702399

The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.


Cell Movement , Disease Models, Animal , Infarction, Middle Cerebral Artery , Ischemic Stroke , Receptors, CCR4 , T-Lymphocytes, Regulatory , Animals , Receptors, CCR4/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , Ischemic Stroke/immunology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Infarction, Middle Cerebral Artery/immunology , Infarction, Middle Cerebral Artery/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Microglia/metabolism , Microglia/immunology , Male , Mice, Inbred C57BL , Chemokines/metabolism
7.
Sci Rep ; 14(1): 10396, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710724

Regulatory T cells (Tregs) is a subtype of CD4+ T cells that produce an inhibitory action against effector cells. In the present work we interrogated genomic datasets to explore the transcriptomic profile of breast tumors with high expression of Tregs. Only 0.5% of the total transcriptome correlated with the presence of Tregs and only four transcripts, BIRC6, MAP3K2, USP4 and SMG1, were commonly shared among the different breast cancer subtypes. The combination of these genes predicted favorable outcome, and better prognosis in patients treated with checkpoint inhibitors. Twelve up-regulated genes coded for proteins expressed at the cell membrane that included functions related to neutrophil activation and regulation of macrophages. A positive association between MSR1 and CD80 with macrophages in basal-like tumors and between OLR1, ABCA1, ITGAV, CLEC5A and CD80 and macrophages in HER2 positive tumors was observed. Expression of some of the identified genes correlated with favorable outcome and response to checkpoint inhibitors: MSR1, CD80, OLR1, ABCA1, TMEM245, and ATP13A3 predicted outcome to anti PD(L)1 therapies, and MSR1, CD80, OLR1, ANO6, ABCA1, TMEM245, and ATP13A3 to anti CTLA4 therapies, including a subgroup of melanoma treated patients. In this article we provide evidence of genes strongly associated with the presence of Tregs that modulates the response to check point inhibitors.


Breast Neoplasms , T-Lymphocytes, Regulatory , Transcriptome , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/drug effects , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Profiling , Prognosis
8.
Front Immunol ; 15: 1375340, 2024.
Article En | MEDLINE | ID: mdl-38711519

Allergic asthma is a widely prevalent inflammatory condition affecting people across the globe. T cells and their secretory cytokines are central to the pathogenesis of allergic asthma. Here, we have evaluated the anti-inflammatory impact of dimethyl fumarate (DMF) in allergic asthma with more focus on determining its effect on T cell responses in allergic asthma. By utilizing the ovalbumin (OVA)-induced allergic asthma model, we observed that DMF administration reduced the allergic asthma symptoms and IgE levels in the OVA-induced mice model. Histopathological analysis showed that DMF treatment in an OVA-induced animal model eased the inflammation in the nasal and bronchial tissues, with a particular decrease in the infiltration of immune cells. Additionally, RT-qPCR analysis exhibited that treatment of DMF in an OVA-induced model reduced the expression of inflammatory cytokine (IL4, IL13, and IL17) while augmenting anti-inflammatory IL10 and Foxp3 (forkhead box protein 3). Mechanistically, we found that DMF increased the expression of Foxp3 by exacerbating the expression of nuclear factor E2-related factor 2 (Nrf2), and the in-vitro activation of Foxp3+ Tregs leads to an escalated expression of Nrf2. Notably, CD4-specific Nrf2 deletion intensified the allergic asthma symptoms and reduced the in-vitro iTreg differentiation. Meanwhile, DMF failed to exert protective effects on OVA-induced allergic asthma in CD4-specific Nrf2 knock-out mice. Overall, our study illustrates that DMF enhances Nrf2 signaling in T cells to assist the differentiation of Tregs, which could improve the anti-inflammatory immune response in allergic asthma.


Asthma , Dimethyl Fumarate , Disease Models, Animal , NF-E2-Related Factor 2 , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , NF-E2-Related Factor 2/metabolism , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Mice , Signal Transduction/drug effects , Ovalbumin/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Mice, Knockout , Female , Mice, Inbred BALB C
9.
J Neuroinflammation ; 21(1): 126, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734662

Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.


Hypoxia-Inducible Factor 1, alpha Subunit , Myasthenia Gravis , T-Lymphocytes, Regulatory , Th17 Cells , Thymoma , Thymus Gland , Thymus Neoplasms , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Thymoma/complications , Thymoma/genetics , Thymoma/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/metabolism , Th17 Cells/immunology , Thymus Gland/pathology , Male , Female , Thymus Neoplasms/complications , Thymus Neoplasms/genetics , Adult , Middle Aged , Aged
10.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674027

Stem cell therapy stands out as a promising avenue for addressing arthritis treatment. However, its therapeutic efficacy requires further enhancement. In this study, we investigated the anti-arthritogenic potential of human amniotic mesenchymal stem cells (AMM) overexpressing insulin-like growth factor 1 (IGF-1) in a collagen-induced mouse model. The IGF-1 gene was introduced into the genome of AMM through transcription activator-like effector nucleases (TALENs). We assessed the in vitro immunomodulatory properties and in vivo anti-arthritogenic effects of IGF-1-overexpressing AMM (AMM/I). Co-culture of AMM/I with interleukin (IL)-1ß-treated synovial fibroblasts significantly suppressed NF-kB levels. Transplantation of AMM/I into mice with collagen-induced arthritis (CIA) led to significant attenuation of CIA progression. Furthermore, AMM/I administration resulted in the expansion of regulatory T-cell populations and suppression of T-helper-17 cell activation in CIA mice. In addition, AMM/I transplantation led to an increase in proteoglycan expression within cartilage and reduced infiltration by inflammatory cells and also levels of pro-inflammatory factors including cyclooxygenase-2 (COX-2), IL-1ß, NF-kB, and tumor necrosis factor (TNF)-α. In conclusion, our findings suggest that IGF-1 gene-edited human AMM represent a novel alternative therapeutic strategy for the treatment of arthritis.


Arthritis, Experimental , Gene Editing , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Animals , Humans , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/immunology , Mesenchymal Stem Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Mice , Mesenchymal Stem Cell Transplantation/methods , Male , Mice, Inbred DBA , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , NF-kappa B/metabolism , Interleukin-1beta/metabolism
11.
J Neuroimmunol ; 390: 578344, 2024 May 15.
Article En | MEDLINE | ID: mdl-38640826

BACKGROUND: Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS: The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS: Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS: MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.


Brain Ischemia , Mice, Inbred C57BL , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Mice , Th17 Cells/metabolism , Male , Brain Ischemia/immunology , Infarction, Middle Cerebral Artery , Acetyl-CoA Carboxylase
12.
Cell Rep ; 43(4): 114072, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38581680

Medullary thymic epithelial cells (mTECs) are essential for the establishment of self-tolerance in T cells. Promiscuous gene expression by a subpopulation of mTECs regulated by the nuclear protein Aire contributes to the display of self-genomic products to newly generated T cells. Recent reports have highlighted additional self-antigen-displaying mTEC subpopulations, namely Fezf2-expressing mTECs and a mosaic of self-mimetic mTECs including thymic tuft cells. In addition, a functionally different subset of mTECs produces chemokine CCL21, which attracts developing thymocytes to the medullary region. Here, we report that CCL21+ mTECs and Aire+ mTECs non-redundantly cooperate to direct self-tolerance to prevent autoimmune pathology by optimizing the deletion of self-reactive T cells and the generation of regulatory T cells. We also detect cooperation for self-tolerance between Aire and Fezf2, the latter of which unexpectedly regulates thymic tuft cells. Our results indicate an indispensable interplay among functionally diverse mTECs for the establishment of central self-tolerance.


AIRE Protein , Central Tolerance , Epithelial Cells , Nerve Tissue Proteins , Thymus Gland , Transcription Factors , Animals , Epithelial Cells/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Thymus Gland/immunology , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Self Tolerance
13.
Nat Immunol ; 25(5): 902-915, 2024 May.
Article En | MEDLINE | ID: mdl-38589618

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Hepatocyte Nuclear Factor 1-alpha , Hypersensitivity , Lymphoid Enhancer-Binding Factor 1 , Multipotent Stem Cells , T Cell Transcription Factor 1 , Th2 Cells , Humans , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Th2 Cells/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hypersensitivity/immunology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Cytokines/metabolism , Thymic Stromal Lymphopoietin , Animals , Cells, Cultured , Mice
14.
Clin Transl Med ; 14(4): e1647, 2024 04.
Article En | MEDLINE | ID: mdl-38566524

BACKGROUND: Moyamoya disease (MMD) stands as a prominent cause of stroke among children and adolescents in East Asian populations. Although a growing body of evidence suggests that dysregulated inflammation and autoimmune responses might contribute to the development of MMD, a comprehensive and detailed understanding of the alterations in circulating immune cells associated with MMD remains elusive. METHODS: In this study, we employed a combination of single-cell RNA sequencing (scRNA-seq), mass cytometry and RNA-sequencing techniques to compare immune cell profiles in peripheral blood samples obtained from patients with MMD and age-matched healthy controls. RESULTS: Our investigation unveiled immune dysfunction in MMD patients, primarily characterized by perturbations in T-cell (TC) subpopulations, including a reduction in effector TCs and an increase in regulatory TCs (Tregs). Additionally, we observed diminished natural killer cells and dendritic cells alongside heightened B cells and monocytes in MMD patients. Notably, within the MMD group, there was an augmented proportion of fragile Tregs, whereas the stable Treg fraction decreased. MMD was also linked to heightened immune activation, as evidenced by elevated expression levels of HLA-DR and p-STAT3. CONCLUSIONS: Our findings offer a comprehensive view of the circulating immune cell landscape in MMD patients. Immune dysregulation in patients with MMD was characterized by alterations in T-cell populations, including a decrease in effector T-cells and an increase in regulatory T-cells (Tregs), suggest a potential role for disrupted circulating immunity in the aetiology of MMD.


Moyamoya Disease , Child , Adolescent , Humans , Moyamoya Disease/genetics , Moyamoya Disease/metabolism , Inflammation , T-Lymphocytes, Regulatory/metabolism
15.
Front Immunol ; 15: 1335651, 2024.
Article En | MEDLINE | ID: mdl-38566998

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Interleukin-33 , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/metabolism , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Obesity/metabolism , Dendritic Cells/metabolism
16.
PeerJ ; 12: e16988, 2024.
Article En | MEDLINE | ID: mdl-38560459

Background: Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods: Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results: Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion: The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.


Myeloid-Derived Suppressor Cells , Pulmonary Disease, Chronic Obstructive , Humans , B7-H1 Antigen/metabolism , CTLA-4 Antigen , Myeloid-Derived Suppressor Cells/metabolism , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory/metabolism
17.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 152-157, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678612

The purpose of this study was to explore the effects of regulatory B-cells (Breg) on intracranial aneurysms by mediating IL-1ß/IL-1R pathways.  The study involved 60 patients undergoing angiography in a hospital from January to June 2022, divided into two groups: 30 with intracranial aneurysms (observation group) and 30 without (control group). Researchers extracted peripheral blood mononuclear cells (PBMC) to analyze the proportion of CD19+CD24hiCD38hiB cells using flow cytometry. These cells, along with T-cells and regulatory T-cells (Treg), were isolated through magnetic bead cell sorting. Following co-culture, the proliferation of T-cells and their related secretory factors were assessed. Additionally, Breg cells, treated with an IL-1R receptor blocker or IL-1R expression adenovirus, were studied to evaluate the levels of IL-10 and TGF-ß. In the study, the observation group showed lower levels of CD19+CD24hiCD38hiB cells, IL-10, and TGF-ß in PBMC than the control group (P<0.05). T-cell proportions were similar in both groups pre and post co-culture (P>0.05). Post co-culture, IFN-γ decreased while IL-4 increased in both groups. The observation group had higher IFN-γ and lower IL-4 than the control group (P<0.05). TNF-α in CD8+T cells, and granzyme B and perforin mRNA levels decreased post co-culture but were higher in the observation group (P<0.05). IL-10 and TGF-ß in Treg cells increased in both groups post co-culture but were lower in the observation group (P<0.05). The observation group also had fewer CD19+IL-1R+IL-10+B cells (P<0.05). After IL-1R blocker addition, IL-10 and TGF-ß in the supernatant decreased in the observation group (P<0.05). Following transfection, IL-1 and TGF-ß levels increased compared to the blank group (P<0.05). The function of peripheral blood CD19+CD24hiCD38hiB cells is impaired in patients with intracranial aneurysms, which may be related to IL-1ß/IL-1R pathways disorder.


B-Lymphocytes, Regulatory , Interleukin-10 , Interleukin-1beta , Intracranial Aneurysm , Signal Transduction , T-Lymphocytes, Regulatory , Humans , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Intracranial Aneurysm/immunology , Intracranial Aneurysm/pathology , Intracranial Aneurysm/metabolism , Female , Male , Middle Aged , Interleukin-1beta/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Interleukin-10/metabolism , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Coculture Techniques , Transforming Growth Factor beta/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Adult , Aged , Cell Proliferation
18.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 107-112, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678615

Parkinson's disease (PD) is defined as a progressive neurodegenerative disease in middle-aged and elderly people. The therapeutic effect of ω-3 PUFAs in several neurodegenerative diseases has been well recognized. Nevertheless, whether nutrition supplementing ω-3 PUFAs exerts a neuroprotective role in PD remains elusive. Bioinformatics revealed 2D chemical structural formula of three components. Mice received indicated treatment with saline, MPTP or ω-3 PUFAs according to grouping. Behavioral function of mice was measured through motor tests such as rearing, akinesia, and rotarod tests. OFT test measured anxiety-like behaviors of mice. Western blotting and TUNEL staining measured dopaminergic fibers and neurons of mice. Western blotting measured inflammation and apoptosis-related protein levels in mouse tissue. FACS measured iTreg cell proportion in colon and brain tissues of mice. ω-3 PUFAs repaired MPTP-stimulated motor function damage in PD mice. ω-3 PUFAs mitigated MPTP-stimulated comorbid anxiety in PD mice. ω-3 PUFAs relieved MPTP-stimulated deficits of dopaminergic fibers and neurons in PD mice. ω-3 PUFAs repressed MPTP-stimulated inflammation and apoptosis pathway activation in PD mice. ω-3 PUFAs repaired MPTP-stimulated immune function damage in PD mice. ω-3 PUFAs exert a protective role in PD mice through alleviating motor function impairment and neuroinflammation by increasing intestinal inducible Treg cells, which may provide a new direction for seeking targeted therapy plans for PD in humans.


Disease Models, Animal , Fatty Acids, Omega-3 , Mice, Inbred C57BL , Parkinson Disease , T-Lymphocytes, Regulatory , Animals , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Intestines/drug effects , Intestines/pathology , Behavior, Animal/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism
19.
J Cell Mol Med ; 28(8): e18341, 2024 Apr.
Article En | MEDLINE | ID: mdl-38647235

Liver metastasis (LM) is an important factor leading to colorectal cancer (CRC) mortality. However, the effect of T-cell exhaustion on LM in CRC is unclear. Single-cell sequencing data derived from the Gene Expression Omnibus database. Data were normalized using the Seurat package and subsequently clustered and annotated into different cell clusters. The differentiation trajectories of epithelial cells and T cells were characterized based on pseudo-time analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to calculate enrichment scores for different cell clusters and to identify enriched biological pathways. Finally, cell communication analysis was performed. Nine cell subpopulations were identified from CRC samples with LM. The proportion of T cells increased in LM. T cells can be subdivided into NK/T cells, regulatory T cells (Treg) and exhausted T cells (Tex). In LM, cell adhesion and proliferation activity of Tex were promoted. Epithelial cells can be categorized into six subpopulations. The transformation of primary CRC into LM involved two evolutionary branches of Tex cells. Epithelial cells two were at the beginning of the trajectory in CRC but at the end of the trajectory in CRC with LM. The receptor ligands CEACAM5 and ADGRE5-CD55 played critical roles in the interactions between Tex and Treg cell-epithelial cell, which may promote the epithelial-mesenchymal transition process in CRC. Tex cells are able to promote the process of LM in CRC, which in turn promotes tumour development. This provides a new perspective on the treatment and diagnosis of CRC.


Colorectal Neoplasms , Liver Neoplasms , Single-Cell Analysis , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Single-Cell Analysis/methods , Liver Neoplasms/secondary , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell Proliferation , Gene Expression Profiling , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cell Communication , T-Cell Exhaustion
20.
Sci Rep ; 14(1): 9458, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658633

Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.


Colorectal Neoplasms , Liver Neoplasms , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Tumor Microenvironment/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Middle Aged , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism
...